são paulo--(
DINO - 01 mar, 2018) - Simon Blake* Imagine um porto, com containers marítimos balançando no ar. Imagine o caos que seria criado se um dos guindastes falhasse, despejando muitas toneladas de carga nas pessoas e nos containers abaixo. Agora, avance rapidamente para um futuro definido por inteligência de machine learning (ML). Uma caixa de controle e um sistema de alerta automatizado notificam os engenheiros de que o guindaste está com problemas. Na inspeção, nada é óbvio? mas, ao longo do tempo, o sistema identificou que o guincho poderá apresentar falha se a velocidade do vento permanecer acima de certo limite durante certo número de horas. O guindaste 'aprendeu' suas próprias fraquezas.Esse tipo de visão nos diz que a ML oferece à humanidade a chance de livrar-se das nossas atividades mais perigosas e mundanas. Tarefas repetitivas podem ser realizadas e aprimoradas, ao mesmo tempo em que ambientes complexos podem ser compreendidos e gerenciados. ML capacitará máquinas e robôs de software a capturarem informações e adaptarem processos em conformidade com elas muito mais rapidamente do que nós conseguimos introduzir tais avanços em seu código.Aprendendo sobre machine learningAnalisando de maneira simples, a ML é o meio pelo qual máquinas usam dados para 'aprender'. Ou, nas palavras do Gartner, operar com ou sem supervisão, com base em aulas fornecidas por novas informações. A "decisão" de efetuar uma ação específica é determinada por laços de feedback que validarão ou invalidarão essa ação. Esse é um importante desenvolvimento na maneira como as máquinas trabalharão para nós. Tanto assim que, na 2017 Global Digital IQ Survey da PWC, mais de metade (54%) das organizações pesquisadas já estão fazendo investimentos substanciais em inteligência artificial - da qual a ML é uma das principais disciplinas. O número salta para quase dois terços (63%) em um período de três anos. Isso é um bocado de investimento em nossa nova família robótica. De fato, o valor desse setor em evolução é enorme. Segundo a IDC, os investimentos em IA e sistemas cognitivos atingirá USD 12,5 bilhões neste ano de 2017.Porém, exatamente em que essas empresas estão investindo? Nós identificamos quatro áreas nas quais a ML realmente transformará o nosso mundo:1. Máquinas que eliminam o riscoDos usos de ML que exploramos aqui, talvez o mais valioso seja a redução do risco. Em contextos mais industriais, como locais com maquinaria pesada ou ambientes operacionais perigosos, a ML tem a capacidade de reduzir o risco de incidentes catastróficos causados por falhas de equipamentos. Ela deverá também permitir uma confiabilidade muito maior em instalações como hospitais - nas quais as falhas de sistemas operacionais ou de energia podem ter consequências terríveis - graças a uma abordagem mais adaptável e inteligente à automação. Essa evolução também aprimorará a infraestrutura crítica de TI que suporta as operações de negócios, o desempenho das aplicações e a disponibilidade. Tomemos como exemplo uma organização de serviços financeiros, na qual a liderança no negócio tem a expectativa de downtime zero e latência ultrabaixa nas suas negociações. A perspectiva de uma falta de energia elétrica é motivo de pesadelos para o CIO. 2. Máquinas que nos mantêm segurosO cenário da segurança é implacável. À medida que a tecnologia de defesa avança, igualmente avançam os hackers que a atacam. Desde a prevalência de dispositivos endpoint, como smartphones e tablets, com suas vulnerabilidades específicas, até a revolução da nuvem e as alterações de protocolos de segurança, há muitas possibilidades contra as quais os profissionais de segurança batalharem. A ML poderá ajudar a fornecer algumas das respostas. O Gartner identificou que existe a probabilidade de um significante aumento na inclusão de capacidades de ML nos produtos para detecção de ameaças e gestão de segurança. A mitigação de riscos de cibersegurança exigirá maior quantidade de analytics e reações em tempo real - para entender padrões de tráfego incomuns ou fluxo de dados para fora da rede -, que, por sua vez, exigirão uma velocidade de ação simplesmente impossível para os seres humanos ou para a tecnologia atual. 3. Máquinas cuidando de sua própria vidaMuitas empresas viverão ou morrerão conforme sua capacidade de controlar custos e gerenciar adequadamente a sua cadeia de suprimentos. Entretanto, para um significante número de organizações, isso depende de uma combinação de insight humano e automação de máquinas rápidas, mas não inteligentes. Cadeias de suprimentos e logística podem tornar-se repletos de ineficiências devido a erro humano, à complexidade dos dados e ao desafio de "não saber o que você não sabe". A ML oferece uma oportunidade de remover os elos fracos da cadeia e aumentar enormemente a abrangência e a velocidade dos cálculos envolvidos nesse processo - particularmente no tocante a identificar tendências que possam não ter sido descobertas de outra maneira.4. Máquinas que contam históriasEmbora hoje estejamos batalhando com os dados necessários à tomada de decisões comerciais informadas, a ML revolucionará a maneira como as organizações compreendem seus clientes. Porém, não será somente em termos de análise de dados que a ML causará um rebuliço. De fato, papéis tradicionalmente associados a seres humanos inteligentes e criativos poderão, em breve, ser assumidos por nossos amigos robóticos. A revista Wired relata que robôs poderão, em breve, ser repórteres esportivos no Reino Unido - um conceito que poderá provocar uivos de desespero de torcedores da nação inteira. A ideia de máquinas capazes de nos contar histórias ao mesmo tempo em que processam volumes gigantescos de dados abre um grande número de novas oportunidades. Aprendendo a mudarMesmo neste ponto embrionário, está claro por que a ML costuma ser encarada com um misto de fascínio e medo. Os dois sentimentos podem ser justificados. Entretanto, apesar de todas as dúvidas que possam permanecer acerca da substituição de conjuntos de habilidades humanas por automação, é provável que a ML transforme profundamente muitas empresas. *Simon Blake é Diretor de Marketing da Vertiv EMEA